Electron Identification + Event Characterization

Bruce Baller September 4, 2003

Recent revisions to SFT/EMCal Electron ID

- SFT pulse height summing scheme unchanged
 - Corrected MC pulse height calibration (~3X too large)
- Drop requirement of large track angle separation (40 mr)
- Side-band SFT pulse height subtraction
- Unique association of emulsion tracks w EMCal clusters
- Changed method for tagging electrons

Data/MC SFT calibration

Sum muon PH using WID cut

MC pulse height after 3.2X reduction

Side-band Subtraction

Crude method of separating track PH from adjacent showers

C = Sum PH within WID = +/-.002 * radlength

L = Sum PH within WID on left

R = Sum PH within WID on right

If (L>C or R>C) set
$$C = \frac{1}{2} * (L+R)$$

Compare PH in each view

Remove showers from track PH

```
PHn = pulse height in each view and station
PH rms = [(PHX-PHU)^2 + (PHX-PHV)^2 + (PHU-PHV)^2]^{1/2}/<PH>
```

- If PH rms > 0.5 there is an inconsistency between the views
 - Ignore the view with the highest pulse height

Electron/Hadron Selection

- nstn = number of stations traversed
- nlo = number of stations with low pulse height (<5 MIP's/plane)
- nhi = number of stations with high pulse height (>5 MIP's/plane)
- nbigrad = number of stations with > 2 rad lengths
- Eclus = EMCal cluster energy within 20 cm
- Hadron = nlo.eq. nstn.and. Eclus < 0.5 GeV
- Electron = nbigrad.gt. 0.and.nhi.gt. 0

Special case for station 4

- Electron = nbigrad.eq. 0.and. nlo.gt. 0.and. Eclus > 20 GeV
- Tracks failing these cuts are declared hadrons

These cuts are not effective in identifying hadrons that shower in the EMCal for events in station 4

EMCal shower shape e/π separation

- Find Y width of EMCal shower associated with track
- Require central Eclus > 5
 GeV
- Find Y rms using blocks within +/- 10 cm δX of projected track
- Set track Eclus = 0 if Y rms < 0.15 (preliminary cut)
- Y rms is ~independent of electron energy & radiation length

SFT Pulse Height vs t & Energy

- Histogram SFT pulse height vs radiation length (t) in 6 MC Truth energy bins
- Used 3k Period 4 MC events
- Fit parameters not used
- Find maximum phsum in each histogram
- Linear fit of E vs phsum_{max}

Electron energy estimate

- If Eclus > 10 GeV, use Byron's estimator
 - E = (Eclus + 2.5 GeV)/(0.97 0.0929*t)
- If Eclus < 10 Gev use SFT
 - $E = 6 + 1.4*phsum_{max}$

Event Characterization & Primary Lepton Selection

- If >3 MID hits \rightarrow muon CC
- If 1 tagged electron track electron \rightarrow CC electron
- If > 1 tagged electron assume there is only one primary electron + false positive electron tags
 - Find the track with the highest energy
 - Form a list of electrons with 50% of the maximum energy
 - If list contains > 1 electron (14% of 406 data events)
 - Primary electron = track with the best $\delta \phi$
- Store information in evt_info
 - Evt_lepton = primary lepton track number
 - 0 = NC, + = CCMu, = CCe

Data/MC δφ comparison > 3 primary tracks

Monte Carlo Results: Efficiency & Purity

	Tag	Tag	Tag
	Ccmu	Cce	NC
True Ccmu	74%	4%	22%
True Cce	2%	79%	19%
True NC	2%	16%	82%
True Tau	16%	24%	61%

Data events are corrected by the inverse of this matrix (sans True Tau)

Phase 1 & 2 Results: Preliminary

	Tag	Tag	Tag
	Ccmu	Cce	NC
Data events	164	93	149
MC Corrected	169	73	168
Location Eff	54%	37%	38%
MC & Loc Corr	313	198	441
Ratios	33%	21%	46%
Expected	41%	33%	23%

← From ANN

Event Types by Station

	Stn 1	Stn 2	Stn 3	Stn 4	All
Tag Ccmu	54	36	43	31	164
Tag Cce	28	18	23	24	93
Tag NC	42	29	42	36	149
CCe/Ccmu	52%	50%	53%	77%	57%
NC/Ccmu	78%	81%	98%	116%	91%

Station 4 problems remain

Compare with ANN

- ANN NC 104 events
 - 1 CCmu, 12 CCe, 91 NC (88%)
- ANN CCe 118 events
 - 4 CCmu, 75 Cce (64%), 39 NC

Visual Scan

	Tag	Tag	Tag
	Ccmu	Cce	NC
True Ccmu	72%	10%	18%
True Cce	7%	89%	4%
True NC	3%	24%	73%
True Tau	45%	55%	0%

Summary & Plans

- Rough agreement with expected event ratios
- MC/data differences need understanding
- Check CCmu events with tagged electrons